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Homogeneous pattern selection and director instabilities of nematic liquid
crystal polymers induced by elongational flows
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We characterize homogeneous patterns, their stability, and phase transitions in nematic liquid
crystal polymers~LCPs! with imposed elongational flows. We combine the flow-induced analysis of
order parameters by Seeet al. @J. Chem. Phys.92, 792 ~1990!#, Bhaveet al. @J. Rheol.37, 413
~1993!#, Rey@Macromol. Theory Simul.4, 857~1995!#, and Wang@J. Non-Newtonian Fluid Mech.
22, 147 ~1997!#, with the pure nematic, full tensor analysis of Shimadaet al. @J. Chem. Phys.88,
7181~1988!#. To make contact with these seminal studies, we select a moment-averaged Doi kinetic
model for flows of rod-like nematic LCPs with a quartic short-range intermolecular potential; the
connection with alternative kinetic and continuum models for flows of LCPs is noted. New
elongation-induced director instabilities are revealed for patterns previously identified as candidates
for stable pattern selection. From a full tensor analysis, we determine the complete phase diagram
for homogeneous patterns in the parameter space of LCP concentration and elongation rate. With
respect to experimental predictions, in axial extension, biaxial patterns exist but they are all unstable
and the only stable patterns are uniaxial; in planar extension, above a moderate concentration the
only stable nematic patterns are biaxial. ©2000 American Institute of Physics.
@S1070-6631~00!03003-8#
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I. INTRODUCTION

Nematic liquid crystal polymers~LCPs! in a flow field
may exhibit either uniaxial or biaxial symmetry at differe
locations and time depending on the nature of the flow fi
and the polymer concentration. Nematic orientation is a m
soscale property, reflective experimentally of averages ov
cloud of rod-like molecules. A uniaxial symmetry obtain
when there is a single preferred direction of orientation,
fining a unique director, with isotropic order in the plan
orthogonal to that director; a single order parameter provi
the averaged degree of order with respect to the dis
guished director. Biaxial symmetry occurs when there is
plane of isotropy, but rather three principal axes of me
scale orientation, and the degrees of orientation with res
to each principal axis are distinct.

Certain orientation patterns are consistently measure
steady flow processes, presumably consisting in local sp
regions of stable equilibria that respond to the particular fl
in that region. In these local regions, the LCP may be r
sonably approximated as a spatially homogeneous L
There are several competing models for flows of LCPs;
texts by Beris and Edwards1 and Larson2 provide an excel-
lent summary of both continuum and kinetic theories.

We select for this study the short-range elasticity the
of Doi,3 which is a moment-averaged kinetic theory mod
based on the Doi closure approximation. In this mesosc
4901070-6631/2000/12(3)/490/9/$17.00
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theory, the orientation variable is the average with respec
the probability distribution function of the second moment
the molecule axis, yielding anorientation tensor Qwhich is
rank 2, symmetric, and traceless. There is ample evide
that in elongational flows this approximate theory provide
good model for flow-induced patterns and phenomena,
cluding homogeneous phase transitions and fiber flows4–9

The reader is referred to Feng and Leal10–12 and Wang13 for
comparisons of the Doi model employed below and vario
alternatives in elongational flows.

The upshot of these studies is that the standard Doi
sure model with short-range elasticity provides a quite r
sonable model for the purposes stated here: homogen
pattern selection in an imposed elongational flow. In wea
flows, such as imposed shear, the predictions of Doi-t
models are far more sensitive to the type of closu
approximation.14 We note further that the mesoscale ave
aged model that arises from a Doi–Edwards kinetic theor
qualitatively very similar to continuum models developed
Beris and Edwards, for example. A proper choice of para
eters allows one to relate the two models~see pp. 556–559
of Ref. 1!. While quantitative predictions made in the follow
ing are specific to the Doi closure model, qualitatively sim
lar results are obtained from continuum models and ot
moment-averaged kinetic models. Alternative studies
flow-induced patterns and stability can be found in the wo
© 2000 American Institute of Physics
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of Khoklov and Semenov,15 Wang and Gelbart,16 and Hu and
Ryskin17,18 which employ Onsager-type models.

Physical applications have motivated earlier studies
patterns in imposed elongation.4,10–12,8,9,13 In extrusion
manufacturing the flow away from boundaries is well a
proximated locally by unidirectional elongation; in film an
sheet manufacturing, or in squeezing flow between para
disks, there are interior flow regions approximated by pla
elongation. Patterns that form are likely to have orientat
structure that is locally built from equilibria of LCPs wit
short-range intermolecular potentials in pure elongatio
flow.

The present study is restricted to this special flo
nematic physics as a model for which we can develo
detailed understanding of the nematodynamic respons
elongational flow. We provide new information beyond th
presented in earlier seminal studies on flow-induced ho
geneous patterns.4,6,9,13,16–18In particular we analyze the ful
orientation tensor, extending the uniaxial results of Refs
and 13 and the biaxial order parameter results of Ref
providing acomplete phase diagram: all flow-induced homo-
geneous equilibria and their stability; all phase transitio
and the orientation modes of every instability.

Our linearized analysis is similar to the full tensor an
lytical treatment of Shimadaet al.,19 who worked with the
kinetic theory for nematic LCPswithout flowto elucidate the
Doi model description of the isotropic–nematic phase tr
sition. The analysis of Ref. 19 was reproduced in the D
closure approximation in Ref. 6 to analyze both the istrop
nematic and nematic–nematic phase transitions without fl
The key observation in Ref. 19 is an explicit basis of ten
rial eigenfunctions of the linearized Doi model, and the k
observation here is that with minor modification this sa
tensorial basis allows us to explicitly solve, in closed for
the elongation-driven linearized stability equations about
homogeneous uniaxial and biaxial equilibria!

The present study applies at a mesoscopic scale se
the moment averaging with respect to the probability dis
bution function, and where polymer–polymer excluded v
ume interactions are presumed to dominate pattern selec
At a larger mesoscopic scale, a variety of patterns and
tures are observed, where long-range Frank elasticity su
is important, and defects mediate the different local patte
We refer to the work of Larson and Mead,20 Larson and
Doi,21 Tsuji and Rey,22 and Kawaguchi and Denn23 for stud-
ies aimed at resolving textures, which require a layer of co
plexity beyond that considered here.

We now set the precise foundation for this pap
Doi24,25 and Bhaveet al.4 developed a kinetic theory fo
flows of spatially homogeneous LCPs in a Newtonian s
vent, subject to an anisotropic hydrodynamic drag an
polymer-polymer mean-field~short-range! interaction with
Maier–Saupe potential. Seeet al.,9 Bhaveet al.,4 Rey,8 and
Wang13 have applied the moment-averaged nematodyna
equations~hereafter called the Doi model! to predict spa-
tially homogeneous nematic patterns that can be suppo
by an imposed, pure elongational velocity fieldv:
f
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x

2
,2

y

2
,zD , ~1!

given in rectangular coordinates (x,y,z) with respect to the
basis (ex ,ey ,ez).

For n.0, the flow stretches along thez axis which we
call axial or unidirectional elongation; forn,0, the flow
stretches radially in the entire plane orthogonal to thez axis,
which we call planar or bidirectional elongation.

The primary questions addressed in the seminal pa
listed above consist of the following.

~1! How is the equilibrium isotropic-to-nematic phas
transition at critical LCP concentration altered by the pr
ence of a steady flow field?

~2! What types of steady-state nematic patterns are
ated by an imposed flow~here elongational!?

~3! How many distinct nematic patterns coexist at p
scribed values of the dimensionless LCP density param
~N! and Peclet number~Pe, the ratio of elongational rate t
LCP molecular relaxation rate!?

~4! What and where are the phase transition bounda
in (N,Pe!?

~5! What are the stability properties of all steady sta
patterns?

~6! What stable patterns co-exist at any fixed(N,Pe!?
Answers to such fundamental questions are clearly va

able in guiding or explaining experiments and manufactur
processes in which elongational flow is dominant. A striki
example of success of the Doi averaged model is given
the flow reversal phenomenon in filament flows of LC
shown experimentally26 and reproduced from numerica
simulations of the Doi model.7 The above questions are in
dependent of free boundary effects, and so are potent
easier to address.

Of particular interest here is the uniaxial versus biax
nature both of the patterns that form, and of their modes
stability and instability. Recent experimental techniques27–29

allow full tensor resolution ofQ, so the analytical under
standing of the uniaxial and biaxial behavior becomes n
essary to properly interpret experimental data, and eve
guide the data collection. Our interpretation of tensorial ba
modes in terms of splay, bend, and twist is due to Shim
et al.19

II. THREE-DIMENSIONAL FORMULATION

A. The moment-averaged Doi model

We recall the moment-averaged equations governing
entation and flow of LCPs as developed in Bhaveet al.:4

Conservation of linear momentum:

r
d

dt
vÄ¹"t, ~2!

wherer is the density of the polymeric liquid,v is the ve-
locity, t is the total stress tensor andd/dt denotes the mate
rial derivative defined byd/dt 5 ]/]t 1v"¹. Note that ex-
ternal forces are ignored.

Incompressibility:
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¹"v50. ~3!

Constitutive equation for stresses:

t52pI1 t̂,

t̂52hD13ckT@F~Q!12l~¹v:Q!~Q1I /3!#, ~4!

F~Q!5~12N/3!Q2N~Q"Q!1N~Q:Q!~Q1I /3!,

whereD5 1
2@¹v1¹vT# is the rate-of-strain tensor,¹v hasi , j

component]v i /]xj in Cartesian coordinates,p is the pres-
sure,h is the solvent viscosity,l is a relaxation time asso
ciated with rotation of the dumbbell molecules,c is the num-
ber of polymer molecules per unit volume,N is the
dimensionless polymer concentration which measures
strength of the intermolecular short-range Maier–Saupe
tential,Q is theorientation tensordefined by

Q5^m^ m&2I /3, ~5!

wherem is a unit vector in the LCP molecular direction, th
averagê (d)& is with respect to a molecular probability de
sity function consistent with rigid rod molecules,k is the
Boltzmann constant, andT is absolute temperature. We no
that the general orientation tensorQ, defined by~5!, is a
symmetric, traceless, rank two tensor. This means that o
coordinates are specified,Q is represented as a symmetri
traceless, 333 matrix, i.e.,Q has five independent compo
nents in general. The orientation-dependent stress cont
tion in ~4! corresponds to anisotropic viscoelastic behavior
LCP flows; the flow-orientation system is closed with the

Nematodynamic equation forQ:

d

dt
Q2~¹v"Q1Q"¹vT!5

2

3
D22~¹v:Q!~Q1I /3!

2
s

l
F~Q!, ~6!

whereF is defined in~4! ands is a dimensionless paramet
describing the anisotropic drag that a molecule experien
as it moves relative to the solution (0,s<1). The isotropic
drag condition iss51, and the highly anisotropic drag lim
is s50.

Remark:As in Refs. 4, 8, 9, and 13, we use the D
closure approximation in the above averaged equatio
Wang13 has extensively studied the results for three types
closure rules, that of Doi, Hinch–Leal 1~HL1!,30 and
Hinch–Leal 2~HL2!.30 His analysis is restricted to a uniaxia
tensorQ, i.e., a scalar order parameter assumption as in R
9, the conclusion of Ref. 13 is that the Doi closure rule a
HL2 closure rule are most consistent with full kinetic theo
predictions for imposed elongational flows and a uniaxiaQ
tensor. The HL1 rule yields spurious uniaxial equilibria
elongation~Ref. 13! and so is not pursued here. Because
the rational and transcendental form of the HL2 closure ru
we restrict this study to the standard Doi closure which p
serves the order of nonlinearity of moments. From this sa
model, Rey8 captures biaxial equilibria and stability prope
e
o-

ce

u-
f

es

s.
f

f.
d

f
,
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e

ties not resolved in Refs. 9 and 13, while we capture f
tensor stability properties~in particular, director instabilities!
not resolved in Rey.8

B. Representations for Q

The key to our analysis lies in understanding and m
nipulating the orientation tensorQ. We pause here to reca
two essential representations ofQ, how they correspond, an
how special forms ofQ ~e.g., uniaxial, biaxial but with fixed
directors! are explicitly characterized within each type
representation.

1. Component representations for Q

A component representation is a standard matrix rep
sentation with respect to a chosen coordinate systemQ
5(Qi j ) with Qi j 5Qji and tr(Q)50, whereQi j are compo-
nents with respect to a coordinate basis. Here we use rec
gular coordinates for whichQi j 5Qxixj

, with Q5(Qi j ei

^ ej . For these coordinates, the symmetric traceless matr
form a five-dimensional vector space with the basis:

Q(1)5F 1 0 0

0 1 0

0 0 22
G , Q(2)5F 21 0 0

0 1 0

0 0 0
G ,

~7!

Q(3)5F 0 1 0

1 0 0

0 0 0
G ,

Q(4)5F 0 0 1

0 0 0

1 0 0
G , Q(5)5F 0 0 0

0 0 1

0 1 0
G . ~8!

Then,

Q5
Q111Q22

2
Q(1)1

Q222Q11

2
Q(2)1Q12Q

(3)

1Q13Q
(4)1Q23Q

(5). ~9!

In Refs. 6 and 19 this basis is instrumental in solving t
linearized pure Doi theory, governed by~6! with ¹v50,
about isotropic and nematic equilibria. This basis has a
been utilized by Sonnetet al.31 The basis$Q( i )% i 51

5 is fixed,
with the ‘‘orthogonality property’’ that tr(Q( i )"Q( j )) is pro-
portional tod i j .

With respect to the bases~7! and ~8!, Q(1) is a splay
modewith respect toez , Q(2) and Q(3) correspond totwist
modes, Q(4) andQ(5) correspond tobend modes.19

2. ‘‘Spectral’’ representations for Q

Traditional ‘‘continuum’’ approaches to LCPs positQ
on the basis of its eigenvalues and eigenvectors, in con
to its components. SinceQ is symmetric, the eigenvectors o
Q form an orthonormal basis ofR3. From the spectral
theorem,32 if di is the eigenvalue associated with eigenvec
ni , then
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Q5( S di2
1

3Dni ^ ni , di5^~ni "m!2&, ( di51.

~10!

SinceQ and ^m^ m& share the same eigenvectors,$ni% i 51
3

are the ‘‘directors’’ of the nematic LCP. The direction c
sinesdi characterize, in a nonlinear averaged sense, the
grees of orientation of the LCP molecules with respect
each director. These define two independent scalar orde
rameters,

s5d32d1 , b5d22d1 , ~11!

which physically correspond to the degree of anisotropic
der in the plane of (n3 ,n1), (n2 ,n1), respectively. From
~10!, Q then admits a biaxial spectral representation:

Q5s~n3^ n32I /3!1b~n2^ n22I /3!. ~12!

The range of (s,b) is a closed triangular region in the (s,b)
plane; see Fig. 1. This representation is equivalent to
biaxial representation in Refs. 33 and 8.

C. Uniaxial limits

If all the eigenvalues ofQ are distinct, the nematic LCP
is fully biaxial. Uniaxial nematics are defined by the cond
tion that two eigenvalues ofQ are equal; the eigenvector (n)
associated with the simple eigenvalue is distinguished,
called theuniaxial director. Since tr(Q)50 there is one in-
dependent eigenvalue, which defines a distinguished si
order parameter.

The conditions forQ to be uniaxial take different forms
From the spectral representation~10!, the uniaxial conditions
are immediate:

d15d2 , d15d3

or

d25d3 ; ~13!

in terms of the order parameters (s,b) and Fig. 1:

FIG. 1. The range of the pair of biaxial order parameterss and b. The
uniaxial limits areb50, s50, ands5b.
e-
o
a-

r-

e

d

le

b50, with uniaxial order parametersu5s

and directorn5n3;

s50, with uniaxial order parametersu5b

and directorn5n2; ~14!

s5b, with uniaxial order parametersu52s

and directorn5n1.

In terms of the basisQ( i ), Q(1) is the unique uniaxial tensor
corresponding in~12! to b50, with director n35ez , and
uniaxial order parameter s, or equivalently, Q
52 (s/3) Q(1). When 0,s<1, the liquid crystal exhibits
‘‘prolate’’ uniaxial symmetry; when21/2<s,0, there is
‘‘oblate’’ uniaxial symmetry; s521/2 corresponds to the
LCP molecule aligned somewhere in the plane orthogona
n; s51 corresponds to parallel alignment ofn and m; s
50 corresponds to an isotropic state in which molecular o
entation is equally probable in all directions.

III. SPATIALLY HOMOGENEOUS PATTERNS IN
IMPOSED ELONGATIONAL FLOWS

Following Refs. 4, 8, 9, and 13, we impose a simp
elongational flow,~1!. The key observation of Seeet al.9 is
that in rectangular coordinates, the velocity gradient is c
stant:

¹v5n diag~2 1
2 ,2 1

2 ,1!. ~15!

Therefore, the momentum equation~2!, with t̂ given by~4!,
is trivially satisfied ifQ is independent ofx, i.e., for spatially
homogeneous patterns. Moreover, since¹v is constant, the
flow-driven Doi nematodynamic equation for spatially h
mogeneousQ in the presence of imposed elongational flo
remains an autonomous tensor ordinary differential equa
in the scaled time variablet̃ 5(s/l) t, ( ˙ )5 (d/d t̃):

Q̇52F~Q!1G~Q;D̃!,
~16!

G~Q;D̃!5D̃Q1QD̃1
2

3
D̃22D̃:QS Q1

I

3D ,

where

D̃5Pe diag~21/2,21/2,1!, Pe5
nl

s
. ~17!

Pe is thePeclet number, the critical flow/orientation dimen-
sionless parameter, measuring the ratio of the elongatio
raten and the orientational relaxation time rates/l, F(Q) is
given in ~4!. Note that bothF(Q) andG(Q;D̃) are symmet-
ric and traceless, therefore the fixed basis$Q( i )% i 51

5 , ~7! and
~8!, remains valuable in identifying the special properties
~16!; the coupled scalar form of~16! is given in Appendix A.
It should be pointed out that in~16! F is based on the Maier–
Saupe intermolecular potential, but any quartic potential t
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reflects the I–N transition yields to a similar analys
Wang13 shows for uniaxialQ the different forms ofF andG
for different closure rules.

Observe that the flow-induced contribution,G(Q;D̃), is
a constant coefficient,quadratic polynomial perturbation o
the cubic polynomial equation. Previous uniaxial9,13 and
biaxial4,8 order parameter analyses have exploited this
by calculating perturbations of the pure nematic equilib
and their stability. All equilibria are continuations of th
Pe50 case, since the number of complex equilibria of a s
tem of cubic polynomial equations cannot increase un
quadratic perturbation.

We now list observations which guide the analysis
follow.

~1! Without flow, all equilibria are uniaxial.6 ~This fact
applies only to quartic intermolecular potentials and to c
sure rules which preserve the degree of moments, e.g.,
and HL1 closures.!

~2! With pure elongational flow, a simple continuatio
algorithm calculates all equilibria of~16!. For Pe50, the
critical concentrations areN58/3,3, and all Pe-induced tran
sitions in type~uniaxial versus biaxial!, number, and stability
of equilibria emerge from these two bifurcation points.

~3! For the elongation-driven model~16!, the full sym-
metry by orthogonalV is broken, but aone-dimensional con
tinuous symmetry is preservedfor all orthogonalV that pre-
serve the axis of flow symmetryez ,

V5S cosz sinz 0

2sinz cosz 0

0 0 1
D . ~18!

This observation is important in determining any degener
of equilibria of ~16!. In particular, sinceQ(1) is a fixed point
of the similarity transformation byV,

VQ(1)VT5Q(1), ~19!

all uniaxial equilibria of (16)are unique. All biaxial equilib-
ria, however, will be seen to have one director parallel toez ,
and thusall fully biaxial equilibria have a continuous sym
metry corresponding to arbitrary orientation of the remai
ing two directors in the x,y plane.

Contact with previous uniaxial9,13 and biaxial8 order
parameter equations for elongation-induced homogene
patterns:

~1! The scalar order parameter equation of Refs. 9
13 follows by assumingQ proportional toQ(1). The govern-
ing scalar order parameter equation is

ṡ5Pe@11s22s2#2U~s!. ~20!

~2! The biaxial order parameter equations of Ref. 8 f
low by assumingQ in the span ofQ(1), Q(2), or equiva-
lently, by positingQ of the form~12! with n35ez , n25ex or
ey . Note that solutions of~16! are invariant with respect to
the similarity transform byV, ~18!, thus each equilibrium
(s,b) corresponds to a family of equilibria, withn1 , n2 in
arbitrary position in thex, y plane. This observation allow
.

ct

-
r

-
oi

y

s

d

-

us to fix the directorsn1 , n2 parallel toex , ey , i.e., to fix
z[0. The governing biaxial order parameter equations
then

st̃5Pe@12b1s1bs22s2#2U~s!1 2
3 Nsb~s2b21!,

~21!

b t̃5Pe@b222bs2b#2U~b!1 2
3 Nsb~b2s21!.

Elongation-induced equilibrium patterns.The construc-
tion of all equilibria of ~16! is straightforward. As noted by
Rey,8 two of the uniaxial limitss50, s5b, are no longer
preserved by the nematic equation~16!, but the fixed points
that evolve from these uniaxial limits do survive, either as
biaxial equilibria patterns or as nonreal, unphysical equil
ria. Figure 2 illustrates the persistence of uniaxial equilib
whose director is parallel toez as well as the emergence o
biaxial steady states for PeÞ0 arising from the flow-
independent uniaxial equilibria whose directors werenot
aligned withez . This result is intuitively quite natural, and
is noteworthy that the Doi closure model captures the p
nomenon precisely.

Stability of equilibria. From the above remarks, it fol
lows that all changes in the number of equilibria occ
within the order parameter equations~21!. Their stability,
however, requires analysis of the remaining three ‘‘direc
modes.’’ This extension of the linearized stability of equili
ria is the fundamental new contribution of this paper. T
linearized stability for the order parameter system~21! is a
straightforward 232 linear algebra calculation accessible
symbolic software; the linearized eigenvaluesm1 , m2 about
any equilibrium (s,b)5(s* ,b* ) are

m152
3 Pe

2
~2s2b!2@12N/324Nsb/314Nb2/3

14Ns2/32AD#,

FIG. 2. Illustration of symmetry-broken genesis of biaxial equilibria for
fixed concentration (N54). Prior to the imposed flow~Pe50!, there are
three uniaxial equilibria on each uniaxial subspace,b50, s50, s5b. With
imposed axial~Pe50.1! and planar~Pe520.1! elongation, the equilibria on
the surviving uniaxial subspaceb50 survive as uniaxial steady state
However, thes50 and s5b uniaxial subspaces are destroyed, and th
corresponding equilibria either deform into biaxial equilibrium patterns
are destroyed~become complex and therefore nonphysical!.
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m252
3Pe

2
~2s2b!2@12N/324Nsb/314Nb2/3

14Ns2/31AD#,
~22!

D5 4
9 N2@s2~s21!21b2~b21!213sb~s1b1sb!

2sb~2s212b211!#1 2
3 N Pe@2s~s21!2

2b~b21!21sb~423s13b!#1 1
4 Pe2~2s2b22!2.

The corresponding linearized eigenfunctions consist of n
trivial linear combinations ofQ(1), Q(2). Remarkably, the
remaining three linearized eigenfunctions are preciselyQ(3),
Q(4), Q(5), a fact which immediately yields explicit formula
for the linearized eigenvaluesm3 , m4 , m5 :

m352Pe~112s2b!2FU~s!

s
1Ns1

Nb

3
~2b2122s!G ,

m452
Pe

2
~2114s22b!2FU~s!

s
1

Nb

3
~2122s12b!G ,

~23!

TABLE I. Dimension of instability for all steady states in axial elongatio
flows.

Region
Type of

steady states 1-D subspace 2-D subspaceFull 5-D space

I: P1 0 0 0

II: P1 0 0 0
P2 1a 1a 1a

P3 0 0 0

III: P1 0 0 0
P2 1a 1a 1a

P3 0 0 0
B1 0 1d

B2 1f 2f,d

B3 1f 2f,e

B4 0 1e

IV: P1 0 0 0
B1 0 1d

B2 1f 2f,d

B3 1f 2f,e

B4 0 1e

V: O1 1a 2a,b 5a,b,c,d,e

O2 0 1b 4b,c,d,e

P1 0 0 0
B1 0 1d

B2 1f 2f,d

B3 1f 2f,e

B4 0 1e

aSplay mode instability with eigenfunctionQ(1).
bTwist mode instability with eigenfunctionQ(2).
cTwist mode instability with eigenfunctionQ(3).
dBend mode instability with eigenfunctionQ(4).
eBend mode instability with eigenfunctionQ(5).
fMixed splay and twist mode instability with eigenfunction in the span$Q(1),
Q(2)%.
-

m552
Pe

2
~2122b14s!2FU~s!

s
1

2Nb

3
~12s1b!G .

Remark:Note that a restricted order parameter analy
of ~21! fails to detect director instabilities. In Table I, th
biaxial patternsB1, B4 in regions III–V each have an insta
bility in one of the bend modesQ(4), Q(5).

All that remains then is to track the phase transitio
~bifurcations! that we previously observed must emana
from Pe50 and the two bifurcation valuesN5 8

3 andN53.
Of course, this continuation of the bifurcation branches
accomplished numerically.

Phase transitions emanating from N58
3, Pe50 (Fig.

3). There are three distinct saddle-node~SN! bifurcation

points, (s* ,b* )5( 1
4,0), characterized bym1(s* ,b* )[0 and

m2(s* ,b* )Þ0; and (s* ,b* )5(0,1
4), (s* ,b* )5(2 1

4,2
1
4),

characterized bym1(s* ,b* )Þ0, m2(s* ,b* )[0. Their fate
under imposed elongation is as follows.

~1! The SN (14,0) persists as auniaxial SN bifurcation
for PeÞ0; see branch AFDJ, Fig. 3. Crossing AFDJ from le
to right, for example by fixing the flow rate and increasin
the concentration, the number of uniaxial equilibria jumps
two.

~2! The remaining two SN bifurcations, (0,1
4) and (2 1

4,
2 1

4), persist assimultaneous biaxialSN bifurcations for
PeÞ0; see branch GBFE, Fig. 3. Crossing GBFE from left
right, the number of biaxial equilibria jumps by four.

Phase transitions emanating from N53,Pe50 (Fig.
3). The isotropic equilibriums5b50 is doubly degener-
ate, i.e., both components of the polynomial vector field~21!
vanish to second order, so that bothm1 andm2 vanish absent
of flow.

~1! The continuation ofm150 for Pe.0 is auniaxial SN
branch, ABCH of Fig. 3. Crossing ABC from left to right the

FIG. 3. Flow-driven phase diagram in the parameter space~N,Pe!.The phase
transition curves correspond to loci in~N,Pe! along which the linearized
eigenvaluesm1 or m2 vanish corresponding to degenerate equilibria.
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number of uniaxial equilibria jumps by two, then crossi
CH from left to right the number of uniaxial steady stat
drops by two.

~2! The continuation ofm150 for Pe,0 yields complex
equilibria.

~3! The continuation ofm250 for Pe,0 is abiaxial SN
branch KEDCI of Fig. 3, corresponding to the broke
uniaxial symmetry. Crossing KEDC from left to right, th
number of biaxial equilibria jumps by two, then crossing
from left to right the number of biaxial equilibria drops b
two.

~4! The continuation ofm250 for Pe.0 yields complex
equilibria.

The phase transition curves of Fig. 3, as describ
above, separate the~N,Pe! half-plane intoeleven distinct re-
gions, labeled I–XI. For each region, Table I~Pe.0! and
Table II ~Pe,0! provide a list of all steady states, bo
uniaxial (Pi for each prolate,Oi for each oblate,i running
over the number of such states! and biaxial@Bi , i running
over each distinct biaxial order parameter pair (s* ,b* )]; the

TABLE II. Dimension of instability for all steady states in planar elongati
flows.

Region
Type of

steady states 1-D subspace 2-D subspaceFull 5-D space

VI: O1 0 1b 2b,c

P1 0 0 2d,e

P2 1a 2a,b 5a,b,c,d,e

B1 0 0
B2 1f 3f,d,e

B3 1f 3f,d,e

B4 0 0

VII: O1 0 1b 2b,c

P1 0 0 2d,e

P2 1a 1a 3a,d,e

B1 0 0
B4 0 0

VIII: O1 0 0 0
P1 0 0 2d,e

P2 1a 1a 3a,d,e

B1 0 0
B1u 1f 1f

B4 0 0
B4u 1f 1f

IX: O1 0 1b 2b,c

B1 0 0
B4 0 0

X: O1 0 0 0
B1 0 0
B1u 1f 1f

B4 0 0
B4u 1f 1f

XI: O1 0 0 0

aSplay mode instability with eigenfunctionQ(1).
bTwist mode instability with eigenfunctionQ(2).
c
Twist mode instability with eigenfunctionQ(3).

d
Bend mode instability with eigenfunctionQ(4).

e
Bend mode instability with eigenfunctionQ(5).

f
Mixed splay and twist mode instability with eigenfunction in the span$Q(1)

Q(2)%.
I

d

number of unstable tensorial eigenfunctions within each s
space that contains the given equilibrium; and finally, t
superscripts convey the particular tensorial eigenfuncti
for each instability. The stable equilibria, as deduced fr
the five-dimensional~5D! full stability analysis~the last col-
umn of Tables I and II!, are listed in bold type.

Referring to Fig. 3 and Tables I and II, we summari
the major results.

~1! The symmetry~18!, restricted to uniaxial equilibria
~19!, impliesuniaxial steady states are discrete, or isolate,
solutions of~16!. For biaxial equilibria, however, similarity
transform byV, ~18!, maps any equilibrium with anglez
50 to arbitrary z, maintaining the order parameters an
moving the distinct biaxial directorsn1 , n2 to anglez with
respect toex , ey . Every biaxial equilibrium therefore corre
sponds to a continuous familywith the corresponding zero
linearized eigenvaluem3 . Strictly speaking, no biaxial pat
terns are linearly stable; some biaxial states havem1 , m2 ,
m4 , m5,0, m350, which is called center stable. Upon r
flection, this result is also intuitively clear, since there
nothing in the flow or the LCP physics to select a dist
guished direction in thex–y plane. Again, the Doi closure
model captures this phenomenon precisely.

~2! Regions I, IV, V, and XI have a unique, uniaxia
stable equilibrium. Note these are prolate phases for Pe.0,
and oblate for Pe,0.

~3! Regions II and III, corresponding to axial elongatio
~Pe.0!, have bistable prolate patterns.

~4! Regions VI, VII, and IX have center-stable biaxi
patterns, with no uniaxial stable states.@We remark that bi-
axial patterns arise in pairs that are related through a s
larity transformationV, ~18!, with z5 p/2. For example, in
region VII, B4 can be obtained fromB1 by rotating the two
directorsn1 ,n2 in the plane orthogonal to the flow directio
by p/2. This discrete symmetry implies that the continuo
symmetry~18! applied toB1 andB4 yield identical continu-
ous families.# Stable oblate uniaxial and center-stable biax
patterns coexist in regions VIII and X.

~5! Biaxial order parameter instabilities of uniaxial stat
are revealed by a jump in the number of instabilities betwe
the one-dimensional uniaxial and two-dimensional biax
subspaces in Tables I and II. For example, in region V,
oblate phasesO1 andO2 each acquire a biaxial order param
eter instability in the twist modeQ(2). A scalar uniaxial
analysis misses these phenomena.

~6! Director instabilities are revealed by a jump in th
number of unstable modes between the 2-D order param
and full 5-D tensor spaces in Tables I and II.

~a! Director instabilities ofuniaxial equilibria:

~i! For Pe.0, in regionV the two oblate phasesO1, O2

are unstable to all director modesQ( i ), i 53,4,5.
~ii ! For Pe,0, in regions VI–VIII a pure order paramete

analysis leads to the erroneous conclusion that
prolate equilibrium, labeledP1, is stable. In factP1 is
unstable to both bend modesQ(4), Q(5) in all three
regions. Thus, no prolate patterns are stable in pla
elongation.

~iii ! The oblate phaseO1 in regions VI, VII, IX has a
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director instability in the twist modeQ(3) as well as
the order parameter instability in the twist modeQ(2).

~iv! The prolate phaseP2 of region VI is unstable to all
five orientation modes. The equilibriaP2 in regions
VII, VIII have one splay mode instability, and tw
bend mode instabilities.

~b! Director instabilities ofbiaxial equilibria:

~i! For Pe.0, in regions III–V a pure order paramete
analysis implies stable biaxial patternsB1, B4 — in
fact,all of these states are unstable to one bend mo,
Q(4), Q(5), respectively. The lower branchesB2, B3

are unstable to one order parameter mixed mode,
also unstable to one bend mode. The upshot is tha
biaxial patterns are stable to axial elongation.

~ii ! For Pe,0, stable biaxial patterns, labeledB1, B4, ex-
ist in regions VI–X. The ‘‘lower’’ biaxial branches
B2, B3 in region VI are unstable to both bend~direc-
tor! modesQ(4), Q(5).

IV. CONCLUSION

From the Doi closure model with an imposed elong
tional flow, we pull together previous results and analy
~Refs. 19. 8, and 13! to give a complete phase diagram
homogeneous pattern selection: All elongation-induced e
libria, their linearized stability, all phase transitions, and t
orientation modes and growth rates of every instabil
Uniaxial equilibria are isolated, whereas all biaxial patte
arise as a continuous family with arbitrary directors in t
plane orthogonal to the flow axis of symmetry.

From a stability perspective, we isolate order parame
and director modes of instability in the linearized analys
Every fully biaxial equilibrium has one zero eigenvalue, co
responding to the rotational symmetry of directors in thex–y
plane transverse to the flow axis; the neutral orientat
mode is always the twist modeQ(3). Some patterns are
stable to order parameter dynamics, and yet unstable to
rector modes, e.g., all biaxial patterns in axial elongat
~Pe.0! suffer at least one bend mode instability. Thus,
axial elongation the only stable equilibrium patterns a
uniaxial. In planar elongation, by contrast, above a mode
concentration and for arbitrary elongation rate, the o
center-stable patterns are biaxial and there are no str
stable patterns.

The phase diagram presented here is robust to the
dratic closure rule, in that any quadratic closure will simp
modify the equilibria and stability. Since the Doi closu
model can be identified with the Beris–Edwards continu
model,1 predictions on pattern selection are qualitative
similar. It is noteworthy that a Doi closure model with qua
tic intermolecular potential, or the analogous Beris–Edwa
continuum theory model, yields intuitive predictions for h
mogeneous pattern selection in imposed uniaxial and pla
elongation. We thereby anticipate these qualitative res
can be used as a guide for processing windows in LCP c
centration (N) and flow rate~Pe! in extensional and film
manufacturing processes of LCPs.
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APPENDIX: FULL 5D FLOW-DRIVEN EQUATIONS

Let Q5(Qi j ). The equations@~16!# for the five indepen-
dent components are

Q̇115
1
3 ~29 U~Q11!16 Q1122 Q11N22 Q11

2 N

1Q12
2 N26 Q12

2 Q11N1Q13
2 N26 Q13

2 Q11N

22 Q22Q11N26 Q22Q11
2 N22 Q22

2 N

26 Q22
2 Q11N22 Q23

2 N26 Q23
2 Q11N!

1Pe~3Q11
2 13Q11Q221Q222

1
3!,

Q̇225
1
3 ~29 U~Q22!16 Q2222 Q22N22 Q22

2 N1Q12
2 N

26 Q12
2 Q22N1Q23

2 N26 Q13
2 Q22N

22 Q22Q11N26 Q11Q22
2 N22 Q11

2 N

26 Q11
2 Q22N22 Q13

2 N26 Q23
2 Q22N!

1Pe~3Q22
2 13Q11Q221Q112

1
3!,

Q̇135
1
3 ~26 Q13Q11

2 N26 Q22Q13Q11N26 Q22
2 Q13N

23 Q22Q13N26 Q13Q12
2 N13 Q23Q12N

23 Q13
2 N26 Q23

2 Q13N22 Q13N29 U~Q13!

16 Q13!1PeQ13~3Q1113Q221
1
2!, ~A1!

Q̇125
1
3 ~26 Q12Q11

2 N26 Q22Q12Q11N13 Q12Q11N

26 Q22
2 Q12N13 Q22Q12N23 Q12

2 N

26 Q13
2 Q12N26 Q23

2 Q12N22 Q12N

13 Q23Q13N16 Q1229 U~Q12!!

1PeQ12~3Q1113Q2221!,

Q̇235
1
3 ~26 Q23Q11

2 N26 Q23Q22Q11N23 Q23Q11N

26 Q23Q22
2 N26 Q23Q12

2 N13 Q13Q12N

26 Q23Q13
2 N23 Q23

2 N22 Q23N29 U~Q23!

16 Q23!1PeQ23~3Q1113Q221
1
2!.
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These equations can also be written in terms of the b
$Q( i )% i 51

5 , employing the expansion~9! and utilizing thatF,
~4!, andG, ~16!, consist of symmetric, traceless terms:

Q̇5F~Q!1G~Q;D̃!,

F~Q!5~12N!Q1N~Q:Q!Q2
N

6
~2Q12

2 2Q22
2 2Q23

2 2Q11
2

2Q13
2 24Q11Q22!Q

(1)1 1
2 ~Q11

2 1Q13
2 2Q22

2 2Q23
2 !

3Q(2)1~Q11Q121Q12Q221Q13Q23!Q
(3)

1~Q12Q232Q13Q22!Q
(4)1~Q12Q132Q23Q11!Q

(5),
~A2!

G~Q;D̃!52
Pe

2
@22Q11Q

(1)12~Q222Q11!Q
(2)

12Q12Q
(3)2Q13Q

(4)2Q23Q
(5)#.
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